The Z of ZETA

Robert Biissow and Wolfgang Grieskamp

July 26, 2000 — for version 1.5 of ZETA

Abstract

The ZETA! environment provides tool support for the Z notation [1], implementing the
upcoming Z Standard [2]. This document describes the Z of ZETA (called ZETA-Z), inclusive
of its lexical representation in ATEX, and type-setting with ZETA’s IMTEX style. The document
also describes differences to traditional Spivey-Z[1], and to the Z supported by the ESZ type
checker version 2 (a predecessor of the ZETA toolkit), called ESZ2-Z.

Contents

Upgrading?
Novice to BTgX-Based Z?

The Style: Detalils

3.1 Tabbing and Alignment e
3.2 Sideby Side
3.3 Style Options and Parameters Lo

The Language: Details

4.1 Sections L. e
4.2 Toolkits e e
4.3 Operator Templates
4.4 Further Standard Z Features and Notes on Upgrading
4.5 FExtended ZETA-Z Features and Incompatibilities with the Standard
4.6 The Denotation Type e

Type-Checker Directives

KTEX Syntax for Z

A.1 Specification.
A2 Paragraphs
A3 Predicates e
A4 Expression. e e e e e
A5 Declarations L. L
A.6 Operator Templates e
A7 Tdentifier L.

Lzeta.html

T A W W

© 00 = O O ot W,

1 UPGRADING? 2
B KTgX Symbols 14

1 Upgrading?

Upgrading from Spivey-Z or ESZ2-7Z to ZETA-Z is relative easy, since the type-checker will detect
incompatibilities for you. The most common problem is the use of primed schema names, S'. In
Standard-Z, the ' is part of a name. To refer to the operator ' which primes all the names in a
schema, it is necessary to put a space (soft, or hard, ~) between the schema name and the ', as
in S’ (87’). You may also put braces around the schema name, such as in (S)’, to make the
difference better visible in the type-setted specification. The places where this fix is required are
usually flagged as type-errors by the type-checker. An other problem is that let is not allowed in
predicates anymore. It can be replaced by 3, since abbreviation (==) are allowed in declarations
now.

It should be noted that ZETA-Z has a few restrictions compared to the currently proposed Stan-
dard, and — what may be a more serious problem — has some eztensions which are (currently) not
part of the Standard. For a discussion of the restrictions and extensions, see Section 4.5.

Note: If you are upgrading from ESZ or older versions of ZETA, you do not need to place the
directive

Y%htoolkit "zrm"

in the preamble of your document any longer. ZETA 1.5 comes with only one toolkit, which is
selected by default. This toolkit is compatible to Spivey-Z and the ZRM (which is also recom-
mended by the Standard), with the restriction that it does not support bags any longer (as the
Standard does not support them).

2 Novice to BKTEX-Based Z7

Say \usepackage{zetal}in the preamble of your WTEX document to include the ZETA style. There
are some style options that can be used, e.g., \usepackage [oxsz]{zeta}. Refer to Section 3.3
for a list of options. In a Z document, Z paragraphs can be arbitrarily mixed with explanatory
text. ZETA-Z provides all the environments to introduce Z paragraphs as they are known from
ITEX based Z representations. Normal schemata are typeset using the schema environment. Line
breaks have to be explicitly specified with \\.

S \begin{schema}{S}
2,y N x, y : \nat \\
Y:p7 X : \power \num
\where
zEXANX={z:2|2<ye2xz} x \in X \land
X =\{"z : \num | z \leq y @ 2*z"\}
\end{schema}

For generic schemata, the formal generic parameter is written directly behind the schema
name (this is in contrary to the proposed Standard-Z, where generic parameters are written as
\begin{schema}{G} [X]?:

QX \beg}i{n?s;hema}{(} [X1}
’7: X \end{schema}

2The next version of ZETA might support this notation for compatibility reasons.

3 THE STYLE: DETAILS 3

Abbreviations, given and free types are put in zed environments. In Standard-Z, schema expres-
sions are treated as expressions, therefore “=” is not needed anymore. (Nevertheless, it is still
supported for compatibility.):

T==[a,b:2|a>b] \begin{zed}

EVEN =={z:2|3y:2ez=2xy} T==1[a,b:\num | a>b]\\
EVEN ==

[TYPE] \{"x : \num |

COLOR ::= red | blue | yellow \exists y : \mum @ x=26y\} \\
[TYPE 1 \\
COLOR ::= red | blue | yellow

\end{zed?}

Axiomatic definitions are written with the axdef environment. Formal generic parameters can be
specified by an optional environment parameter. For compatibility with Spivey-Z and Standard-Z,
generic axiomatic definitions can also be typed with the gendef environment.

| limit : N \begin{axdef}
| limit > 4711 limit : \nat

\where
limit \geq 4711
\end{axdef}
X} \begin{axdef}[X]
£ : X \rel \nat
F(Xoh \end{axdef}
lz(X] \begin{gendef}[X]
£ : X \rel \nat
f: XN \end{gendef}

For a listing of the full Z syntax and Z symbols in BTEX, see Appendix A and Appendix B.

3 The Style: Details

3.1 Tabbing and Alignment

There are two ways of setting indents. You can either use the \tn (put n in braces, if n > 10) to
insert a space of n \zedtabs or use the \< and \> markers for relative indentation:

| f:2+7 \begin{axdef}
: f : \num \pfun \num
Vz:Ne \where
z € domf A \forall x : \nat @ \\ \t1
r<fz x \in \dom f \land \\ \ti
x < £7x

\end{axdef}

3 THE STYLE: DETAILS 4

|f 77 \begin{axdef}
Vz:Nezedomf A \ f ¢ \num \pfun \nun
where
r<fz \forall x : \nat @ \<
x \in \dom £ \land \\
x < £7x \>
\end{axdef}

Both kind of markups are ignored by the type-checker.
A zed environment also introduces a tabular, thus definitions can be aligned:

TREE ::= Leaf \begin{zed}
| Node{(Left : Tree, Right : Tree)) TREE &::=& Leaf \\
& | & Node
\ldata Left : Tree,
Right : Tree
\rdata
\end{zed?}

The environment syntax known from Spivey-Z is just an alias for the zed environment.

Vertical space between lines can be introduced by using \also, \Also, and \ALSO instead of \\.
A vertical space of \jot, 2\ jot, resp. 4\jot is inserted, where \jot=3pt by default.

3.2 Side by Side

For small schemata and definitions, it is usually desirable to set them side by side. The zeta style
introduces the zedgroup environment that sets paragraphs automatically side by side, if they fit.

A — B \begin{zedgroup}
a:N b:N \begin{schema}{A}
E—— a : \nat

b>4 \end{schema}
\begin{schema}{B}
b : \nat
\where
b > 4
\end{schema}
\end{zedgroup}

Line breaks between paragraphs can be forced with \\. In order to produce a regular layout,
schemata in the same row are set with the same height and there is a limited predefined set of
possible paragraph width, i.e. full width, half width, a third, and a quarter. zedgroup environ-
ments can not be nested. Note that due the implementation of zedgroup, errors in the IWTEX code
may lead to error messages with inaccurate positions.

For downwards compatibility with other styles, there is also a sidebyside environment. You
have to specify explicitly with \nextside which portions are supposed to be set side by
side. If more than two columns are required, the number of columns has to be specified,

4 THE LANGUAGE: DETAILS

e.g. \begin{sidebyside}[3] for three columns.

A
’7: \

— B
b:N

b>4

\begin{sidebyside}

\begin{schema}{A}
a : \nat

\end{schema}

\nextside
\begin{schema}{B}
b : \nat
\where

b > 4
\end{schema}
\end{sidebyside}

3.3 Style Options and Parameters

e oxsz: use oxsz charset (you need to have an installation of this font, which originates from
the fUZZ package). If not given, special Z symbols will be simulated using existing symbols
(as in the oz style).

The layout of the Z boxes and formulae can be manipulated by various TEX parameters:

e \zedindent: left indent of Z paragraphs.

e \zedbeforeskip: space before Z paragraphs.

o \zedafterskip: space after Z paragraphs.

e \zedtab: horizontal space that is introduced by \t1

e \zedleftsep: horizontal space between left vertical line of schemata and axiomatic defini-
tions and the beginning of declarations and predicates.

e \zeddeclpartskip: vertical space between top horizontal line of a schema and the declara-
tions.

e \zedlinethickness: thickness of schema and axiomatic definition box’s lines.

4 The Language: Details

4.1 Sections

Z sections are specified with the \zsection command. Here, the section BirthdayBook is defined.
The parent of the section is the library section; if it is omitted, the standard toolkit is used as
the parent (the standard toolkit to be used can be overwritten with the directive %%toolkit, see
below):

section BirthdayBook parents library \zsection[library]{BirthdayBook}

All paragraphs following the \zsection command belong to this section, up to next \zsection
command. This also holds across IWTEX inclusion commands (\input and \include). You can
arbitrarily switch between sections, as in the example below, where we first add some declarations
to the section BirthdayBook, then the BirthdayBookEzec, and then again to BirthdayBook:

4 THE LANGUAGE: DETAILS 6

\zsection[library] {BirthdayBook}
\input{basic}

\zsection[BirthdayBook] {BirthdayBookExec}
\input{exec}

\zsection[library] {BirthdayBook}
\input{addtobasic}

If a document does not contain a \zsection, then one is implicitly created named after the file
name of the document.

4.2 Toolkits

Each Z section has the section Toolkit as an implicit parent. In order to change the name of this
implicite parent, the type-checker directive \zsection is used. This directive needs to placed in
the preamble of the document, before the first Z section or any other Z markup, such as in:

\documentclass{article}
%%toolkit "ExtendedToolkit"

If the string given to %/toolkit is empty, not implicite parent will be created. This is useful to
define toolkits by your own.

4.3 Operator Templates

Z prefix (e.g. —4), postfix (e.g. R™), infix (e.g. 47+11) and nofix (e.g. (4,5, a)) operators can be de-
clared by Standard-Z operator templates. These are given in I’ TEX by the commands \zfunction,
\zrelation, resp. \zgeneric. The templates are declared with three arguments, (1) the prece-
dence, (2) the associativity, and (3) the template itself. The precedence is omitted for relations
and nofix operators. The associativity is only given for infix functions and generics. The template
is build up by ordinary identifiers and place holders for single parameters (i.e. _) and comma
separated lists of parameters (i.e. ,,):

function 40 leftassoc (_ *) \zfunction{40 \leftassoc (_*¥_)} \\
function 30 leftassoc (_ + _) \zfunction{30 \leftassoc (_+_)} \\
function 90(_™) \zfunction{90 (_\inv)} \\

function (<’7>) \zfunction{(\langle ,, \rangle)} \\

\zrelation{(_\subseteq_)} \\

relation (_ < _) \zgeneric{5 \rightassoc (_\fun_)}

generic 5 rightassoc (. — .)

Note that operator template commands can appear anywhere in a document, but they must
not appear inside of Z environments such as zed. The ZETA-style provides the environment
zdirectives in order to group operator templates; it behaves like zed regarding type-setting, but
has no special meaning for the type checker.

The directives for introducing operator templates known from Spivey-Z and ESZ2 are still sup-
ported, by internally translating them to the according Standard-Z templates. The mapping is as
follows:

e J%inrel word = relation (-word.)
e JJprerel word = relation (_word)

e J%ingen word = generic 2 rightassoc (_word_)

4 THE LANGUAGE: DETAILS 7

e JJpregen word =—> generic 90(-word)

e Jinop word N — function 10 + (10 * N) leftassoc (_word-)

o Jhtexrel N \tok = \zrelation{9999 (\tok {_} ... {_P)}
o Jhtexgen N \tok = \zgeneric{9999 (\tok {_} ... {_P)}
o Jhtexop N \tok = \zfunction{9999 (\tok {_} ... {_})}

The ZETAstyle offers some auxiliar macros to define styles of new operators:

e \Zkeyword: define a keyword.

\Zinop: define an infix operation, such as div.

\Zpreop: define a function or prefix operations, such as dom or pre.

\Zinrel: define an infix relation, such as partition.

\Zprerel: define a prefix relation, such as disjoint.

Use these macros as in:

\newcommand{\myinop}{\Zinop{op}}

The effect is a selection of an appropriate font and spacing properties of the introduced IXTEXtoken
in math.

4.4 Further Standard Z Features and Notes on Upgrading

ZETA-Z supports the Standard-Z language (beside of a few incompatibilities described in the
next Section). Among Z-sections and operator templates, the most important features are the
followings:

e unification of value expressions with schema expressions. A schema expression is just an
expression which denotes a set of bindings.

e usage of expressions where in traditional Z only schema references are allowed: any expression
denoting a set of bindings can be used as a schema reference

e schema decoration (S') as an operator

e)\ and p expressions bind tighter then binary relations. In particular, it is possible to write
f =Xz :N e E instead of the formerly required f = (Az : N o E)

e It is possible to provide an empty declaration list in schema text or axiomatic definitions.
In particular, one can write:

X
f=Az:X o F

Users upgrading from Spivey-Z or ESZ-Z to ZETA-Z (resp. to Standard-Z in general) have to
tackle with the following typical incompatibilities (for a comprehensive discussion, see [2]):

4 THE LANGUAGE: DETAILS 8

e decoration is now part of a name. Thus S’ denotes the name S’, not the schema S where
all variables are decorated with '. In order to denote the decoration operators on schemas,
one either uses space, S', or braces, (S)' (in the later example, S can be in fact an arbitrary
expression denoting a schema).

e a p-expression without a e must always be put in parentheses ((u E))

These incompatibilities are straight-forward detected by a type checker. Experiences show that
around 90% of the problems when upgrading a 7 specification are related to the usage of S’, which
is commonly applied in expressions such as (65,6S’) (now to be written as (05,6S")).

4.5 Extended ZeTa-Z Features and Incompatibilities with the Standard

Standard-Z is still a moving target. ZETA-Z does not conform completely to it, and adds extensions
which are currently not found in the Standard.

The following restrictions compared to the Standard are currently present:

1. the IATEX-lexis of ZETA-Z is oriented towards Spivey-Z, and does not support the recently
proposed features such as multi-token-words. The IATEX-tokens { and } are not treated as
whitespace, but as normal tokens®. The lexis will by synchronized with the Standard in one
of the next revisions of ZETA.

2. it is not possible to redefine the meaning of AS and =S. In, fact A and = are provided as
operators on schemas (see below).

3. there are some subtle restriction in operator templates (which shouldn’t become visible to
users, however). These will be synchronized with the Standard in future revisions.

The following extensions compared to the Standard are currently found in ZETA-Z:

1. The order how paragraphs appear in a Z section is arbitrary, apart of that the definition-use
relation of paragraphs must be acyclic. (A paragraph is in definition-use relation to another
paragraph, if it introduces a name which is referred to by the other paragraph.)

2. A and Z are introduced as expression operators. An explicite definition of a schema named
AS (ES) is not supported.

3. Mutual recursive free types may appear in different paragraphs, and not just one paragraph
where they are separated by &. It is in general possible to refer to Z names in a free type
definition which are themselves defined in dependency of this free type.

4. Global constants can be declared multiple times in the environment of a section. All decla-
rations must be type-compatible.

5. Given and free types may be generic. A generic given type is written as [T[X]]. A generic
free type is written as T[X] u=....

Some of these extensions have been proposed to the Z ISO Panel, and some of them might make
their way into the final Standard. Yet, be aware that when using these extensions, your specifica-
tion might become incompatible with Standard Z*

3This is to be downwards-compatible with ESZ2, to support its IATEX-style operator templates, %%texop etc.
The use of these templates is discouraged, and its support will be canceled in the future. Use the %%macro directive
to simulate similar effects.

4The type checker currently doesn’t warns you when using ZETA extensions. This may be fixed in one of the
next releases.

5 TYPE-CHECKER DIRECTIVES 9

4.6 The Denotation Type

A further extension of ZETA-Z is a builtin notation and type for denotations (strings).

A denotation is written as follows:

| d : denotation \begin{axdef}
d: \denotation
| d = "Hello World! How do You do?”
\where
d = \ZD{Hello World! How do You do?}
\end{axdef}

Inside of a denotation \ZD{. ..}, the following escape sequences can be used:

e \n — newline
e \r — carriage return

e \t — tabulator

\b — backspace

\f — formfeed

e \\ — backslash
e \{ — braceopen

e \} — braceclose

Only two functions are available on denotations: dec d converts a denotation in a sequence of
natural numbers, where each number represents the encoding of the given letter, whereas enc s
converts a sequence of numbers into a denotation. The encoding is unspecified.

enc : denotation — seq N \begin{axdef}
dec : seqN — denotation \denc: \denotation \fun \seq \nat \\
\ddec: \seq \nat \pfun \denotation
\end{axdef}

5 Type-Checker Directives

A type-checker directive starts with %7 at the beginning of a line and lasts until the end of the line.
Beside of the %%toolkit directive mentioned in Section 4.2, and the operator template directives
described in Section 4.3, the following directives, as known from FUZZ and ESZ2, are supported:

e Text after a double TEX comment followed by a space (%% ...) is processed by the type-
checker, wheres it is ignored in the type-setted document.

e A simple concept for macro expansion is provided. The directive
Jkmacro token n replacement

defines the macro token with n parameters. The macro is replaced by the replacement before
the syntax is checked (similar the the C preprocessor). Parameters are referenced with #1,
#2, etc. in the replacement.

The macro directive can e.g. be used for defining layout tokens or comment commands, such
as in

5 TYPE-CHECKER DIRECTIVES 10

%Jmacro \< 0
%/macro \zcomment 1

where the replacement is just empty. The %%ignore directive as known from FUZZ is a
special case of this usage of macro-directives, and is still supported.

Macros can also be used for introducing new operators, such as the definition of an exclusive
or (i.e. \1xor{x>0}{x\leq 0}):

Y%shmacro \lxor 2 (\lnot (#1 \iff #2))

e It is possible to assign to environments the syntactic “role” of an existing Z-environment.
This is done by the directive:

%%environment new-env-name old-env-name

This feature makes it possible to define new Z environments which implement some extra
layout functionality (e.g. by generating a margin).

e The %1ine directive as known from fUZZ is supported. It has the form:
%%line "source" $ n

The effect is that the next line and all subsequent lines will get locators as if they belong to
source starting at line n. This is useful if Z is generated from some other input language.

A BTEX SYNTAX FOR Z

A PBETEX Syntax for Z

This syntax is based on the working draft version 1.5 of the Z standard.

A.1 Specification

Specification
Section
Parents

A.2 Paragraphs

Paragraph

ZedParagraphs

ZedParagraph

Branch
Formals
Sep

A.3 Predicates

Predicate

Relation

Paragraph x Sectionx
\zsection [[Parents] | {NAME} Paragraphx
NAME { , NAME }

\begin{zed} ZedParagraphs \end{zed}

11

\begin{axdef} [[Formals] | SchemaDisplayText \end{axdef}

\begin{gendef} [Formals] SchemaDisplayText \end{gendef}

\begin{schema}{NAME [[Formals] |}
SchemaDisplayText

\end{schema}

ZedParagraph

ZedParagraph Sep ZedParagraphs

[NAME { , NAME }]

EqualDecl

GenName == Expression

NAME ::= Branch{ | Branch }

OperatorTemplate

DeclName [\1data Expression \rdata |

NAME { , NAME }

\\

\forall SchemaText @ Predicate
\exists SchemaText @ Predicate
\exists_1 SchemaText @ Predicate
Predicate \\ Predicate

Predicate ; Predicate

Predicate \iff Predicate
Predicate \implies Predicate
Predicate \lor Predicate
Predicate \1and Predicate

\1not Predicate

Relation

Expression

true

false

(Predicate)

Expression NAME { Expression NAME }
Expression NAME { Expression NAME } Expression
NAME Expression { NAME Expression }

A BTEX SYNTAX FOR Z

A.4 Expression

Expression

Renaming
Application

\forall SchemaText @ Expression

\exists SchemaText @ Expression
\exists_1 SchemaText @ Expression
\lambda SchemaText @ Expression

\mu SchemaText@ Expression

\LET EquaIDecl{ ; Equal-Decl } @ Expression
Expression \iff Expression

Expression \implies Expression

Expression \lor Expression

Expression \1and Expression

\1lnot Expression

\IF Predicate\THEN Expression \ELSE Expression
Expression \semi Expression

Expression \pipe Expression

Expression \hide (DecI—Name{ , Decl-Name })
Expression \project Expression

\pre Expression

Expression \cross Expression { \cross Expression }
\power Expression

Application

Expression Expression

Expression STROKE

Expression Renaming

Expression. RefName

Expression. NUMBER

\theta Expression { STROKE }

RefName

RefName[Expression { , Expression }]
NUMBER

\{ Expression { , Expression } \}

\{ SchemaText [@ Expression]\}

[SchemaText]

\1blot EqualDecl { , EqualDecl } \rblot

(Expression , Expression { , Expression })
\mu SchemaText

(Expression)

[DecIName / DeclName { , DecIName / DeclName }]

Expression NAME { Expression NAME }

Expression NAME { Expression NAME } Expression
NAME Expression { NAME Expression }

NAME Expression NAME { Expression NAME }

12

A.5 Declarations

SchemaDisplay Text

SchemaText
DeclPar
Declaration

ColonDecl
EqualDecl
DecIName

RefName

OpName

GenName

OperatorTemplate

CategoryTemplate

Prec
Template

Prefix-Template
Post-Template
Infix-Template
Nofix-Template

A.7 Identifier

NAME

LETTER
DIGIT
STROKE
NUMBER

A BTEX SYNTAX FOR Z

DeclPart [\where Predicate |
DeclPart [| Predicate |
Declaration { Sep Declaration }
ColonDecl

EqualDecl

Expression

DecIName { , DeclName } : Expression
DeclName == Expression
NAME

OpName

NAME

(OpName)

A.6 Operator Templates

_ NAME { _ NAME }

_ NAME { _ NAME } _
NAME _ { NAME _ }
NAME _ NAME { _ NAME }
NAME { NAME }

\zrelation Template

\zfunction Category-Template
\zgeneric Category-Template

Prec Prefix-Template

Prec Postfix-Template

Prec Assoc InfixTemplate
Nofix-Template

NUMBER

Prefix-Template

Postfix-Templat

InfixTemplate

Nofix-Template

(NAME { (_ | ,,) NAME } _)
(_NAME { (_ | ,,) NAME })
(_NAME { (_ | ,,) NAME } _)
(NAME { (_ | ,,) NAME })

\ LETTER LETTER { STROKE }

Letter {Letter | Digit | _) } { STROKE }

Al...]Z|al|...|]z
0]...9
> | _Digit | 7 | !

DIGIT { DIGIT }

13

B BTEX SYMBOLS

B ETEX Symbols

14

Logic
- \1lnot unary pre \pre unary
A \land left V \lor left
= \implies right & \iff left
v \forall - 3 \exists -
i \project left \ \hide left
H \semi left >> \pipe left
if \IF - then \THEN -
else \ELSE - let \LET -
Sets
P \power pregen F \finset pregen
%) \emptyset word # \# word
N \cap inop 4 U \cup mop 4
\ \setminus inop 3
- \subseteq inrel C \subset inrel
= = inrel * \neq inrel
€ \in inrel € \notin inrel
U \bigcup word N \bigcap word
disjoint \disjoint prerel partition \partition inrel
Relations and Functions
— \mapsto inop 1 X \cross inop 1
dom \dom word ran \ran word
) \circ inop 4 g \comp inop 5
@ \oplus inop 5 ~ \inv postop
< \dres inop 6 > \rres inop 6
< \ndres inop 6 B> \nrres inop 6
+ \plus postop * \star postop
— \rel ingen —+> \pfun ingen
— \fun ingen —+ \pinj ingen
— \inj ingen —+>» \psurj ingen
—» \surj ingen — \bij ingen
> \ffun ingen > \finj ingen
id \id word
(\limg -) \rimg -
Integers
V4 \num word N \nat word
.. \upto mnop 2
+ + inop 8 — - inop 3
* * inop 4 div \div inop 4
mod \mod inop 4
< < inrel < \leq inrel
> > inrel > \geq inrel
Sequences
(\langle -) \rangle -
seq \seq pregen iseq \iseq pregen
in \inseq inrel - \cat inop 3
prefix \prefix inrel suffix \suffix inrel
[\filter word 1 \extract word

REFERENCES 15

References

[1] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

[2] 1. Toyn. Innovations in standard Z notation. In J. P. Bowen, A. Fett, and M. G. Hinchey,
editors, ZUM’98: The Z Formal Specification Notation, volume 1493 of Lecture Notes in Com-
puter Science, pages 193-213. Springer-Verlag, 1998.

